
Python data processing
libraries
and how to stitch them into a data platform



Modern Data Stack

Layers

● Data Ingestion

● Data Storage

● Data Transformation

● Data Use

● Data Governance

Language: SQL

It is not really a stack. No open 
standards and vendors taking it 
all.



New Type of User and early ML stack

New User: Data Scientist

“Stack”:

● Ingestion: Python
● Storage: csv files, blobs
● Transformations: pandas, numpy, all ML libraries
● Data visualization: notebooks, matplotlib etc.

A set of libraries glued together with Python

A set of “de facto” standards to make it a little bit easier: 
pandas, numpy, iPython…



Composable data stack: same concept - for data

● Composability
● Portability (pip install data platform)
● Open “standards” (mostly de facto)
● Breaking silos
● Tool Specialization
● UI is Code (Python)

https://wesmckinney.com/blog/looking-back-15-years/

https://wesmckinney.com/blog/looking-back-15-years/


What’s there? What’s missing?

● Data Representation & Storage: arrow, parquet, avro

● Table Storage: Delta, Iceberg

● Query Engine: duckdb, polars, datafusion, ibis, sqlglot …

● Data Ingestion: Python, singer, dlt

● Data Transformation: ML libs, dataframes, sqlmesh, ibis, hamilton …

● Runners, orchestrators: Airflow, temporal, modal

● Data (Power) Use: Evidence, Observable, Notebooks

● Data Governance: Nessie, Hive (catalogs), SODA (data quality), data contracts (?)



Enablers: columnar data in-memory and at rest

PARQUET

Released in 2013, Apache Parquet is an open-source columnar storage format 
designed for efficient data storage and retrieval in large-scale data processing 
frameworks.

Efficient compression, Optimized IO

ARROW

Launched in 2016, Apache Arrow is an open-source in-memory columnar data 
format that facilitates high-performance analytics.

Standardized Memory Representation, 



Columnar storage



Python bindings for arrow: pyarrow

● Tons of things combined in one lib: 
in-memory tables, compute, 
parquet storage, parsers, writers, 
datasets, query engines, remote 
filesystems.

● Very well integrated with Python 
native objects and Pandas



Open table formats: new industry standards

What if we want to update, delete data in parquet? Manage many tables? Evolve 
the schema? ACID Transactions? Petabytes of data?

ICEBERG

Created by Netflix to manage their massive data lakes, Iceberg was contributed to the 
Apache Software Foundation in 2018.
It is the new storage standard for warehouses. Industry adopting it.
Complicated ecosystem of vendors: query engines, catalogs.

DELTALAKE

Developed by Databricks to address the challenges of data lakes, Delta Lake was 
open-sourced in 2019.

Standardized Memory 
Representation



Open table formats: delta-rs

DELTA-RS
Python binding for rust library. Linux 
Foundation. Started independently from 
Databricks. Pretty feature complete.

● Append, replace, merge
● Schema evolution
● Table maintenance
● Seamless arrow integration

Standardized Memory 
Representation



Open table formats: pyiceberg
Standardized Memory 
Representation

PYICEBERG
Supports table storage and catalogs. 
Apache Foundation. Lacks several 
fundamental features. Low level interfaces. 
Mandatory catalog.

Gaining a lot of momentum.



Query engines: separated from data

A kind of innovation in data:

● Open storage and table formats enable query engines independent from 
data

● Move query engine where your data is (vs. data to the query engine)
● Simple, fast, portable, in-memory and hybrid. No backend

Ecosystem of interfaces and optimizers:

● Data frame expressions, to-sql compilers: ibis
● SQL parsers, optimizers, lineage: sqlglot



Query engines: duckdb and datafusion

● Fast, portable analytical 
database

● Scanners for parquet, 
iceberg, delta, postgres, json, 
csv…

● Also own optimized storage.
● Very good Python bindings 

with variety of interfaces.
● Can query arrow.
● Thriving community



Query interfaces: ibis, sqlglot

Are we back to SQL? No

● Ibis converts data frame expressions 
into SQL and talks to tons of backends.

● Sqlglot and duckdb inside (query files, 
arrow tables)

● Lazy execution (only when 
materialized)

● Very composable
● Also https://github.com/data-apis



Shift left: data power user

● BI as code
● Share data back
● Real time updates
● Duckdb inside (WASM)
● pip install

https://evidence.dev/

https://docs.google.com/file/d/1GqPbScAw_FMvG2bsKjnor0wst_ynxzTl/preview


Stitching together data platforms: dlt

dlt is Python OS 
library for moving 
data

● Talks to modern and composable 
data stacks.

● Lightweight, no backend
● Automates data loading, schema 

inference, incrementals
●



Rest api → json → parquet → iceberg@s3

● Partitioned, incremental dlt resource



An example data platform: PostHog

● PostHog: all-in-one open source platform that 
helps +200,000 developers build successful 
products

● dlt & temporal are the main OSS tools that power 
the recently launched data warehouse product in 
Posthog’s storage in S3

● The stack:

○ dlt to move data

○ pyarrow + delta-rs for storage and table 
maintenance

○ duckb and clickhouse as query engines

○ temporal to run

○ Posthog platform to explore data



dlt+ demo
dlt+ is dlt for data platform teams


